
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2001; 37: 905–931 (DOI: 10.1002/fld.196)

Numerical simulation of the unsteady flow over an
elliptic cylinder at different orientations

H. M. Badra,*, S. C. R. Dennisb and Serpil Kocabiyikc

a Mechanical Engineering Department, King Fahd Uni�ersity of Petroleum and Minerals, Dhahran, Saudi Arabia
b Department of Applied Mathematics, The Uni�ersity of Western Ontario, London, Ontario, Canada

c Department of Mathematics and Statistics, Memorial Uni�ersity of Newfoundland, St. John’s, Newfoundland, Canada

SUMMARY

A numerical method is developed for investigating the two-dimensional unsteady viscous flow over an
inclined elliptic cylinder placed in a uniform stream of infinite extent. The direction of the free stream is
normal to the cylinder axis and the flow field unsteadiness arises from two effects, the first is due to the
flow field development following the start of the motion and the second is due to vortex shedding in the
wake region. The time-dependent flow is governed by the full conservation equations of mass and
momentum with no boundary layer approximations. The parameters involved are the cylinder axis ratio,
Reynolds number and the angle of attack. The investigation covers a Reynolds number range up to 5000.
The minor–major axis ratio of the elliptic cylinder ranges between 0.5 and 0.6, and the angle of attack
ranges between 0° and 90°. A series truncation method based on Fourier series is used to reduce the
governing Navier–Stokes equations to two coupled infinite sets of second-order differential equations.
These equations are approximated by retaining only a finite number of terms and are then solved by
approximating the derivatives using central differences. The results reveal an unusual phenomenon of
negative lift occurring shortly after the start of motion. Various comparisons are made with previous
theoretical and experimental results, including flow visualizations, to validate the solution methodology.
Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper considers the classical problem of unsteady two-dimensional uniform flow past an
impulsively started inclined elliptic cylinder. The initial development of this flow was investi-
gated by Wang [1], Dennis and Staniforth [2], Staniforth [3] and Panniker and Lavan [4]. All
of these studies were carried out at high but finite values of the Reynolds number, except for
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Panniker and Lavan in which the initial flow was investigated at a Reynolds number of 200.
It is well known that the early development of the flow after the start can be determined
analytically using the method of inner and outer expansions by taking the interactions between
the boundary layer and the outer inviscid flow into consideration. Wang [1] adopted this
approach to obtain uniformly valid solutions throughout the flow field with emphasis on
separation and stall. He found that the lift continuously increases from an initial value of zero,
contrary to the view put forward by Howarth [5] that no lift occurs up to the time of
separation. Staniforth [3, pp. 21–33], on the other hand, worked out the underlying basic
structure of the initial flow by analysis, but with only the inner solutions determined using
global integral conditions on the vorticity without the necessity of finding the outer solutions,
often of lesser interest from a practical point of view. It is noted that complete details of the
matching procedure can be established using integral conditions that can be derived from one
of Green’s identities and the details of the outer solution can be given if desired (see Dennis
and Kocabiyik [6] for further explanation of these conditions). In Staniforth’s work, numerical
solutions to the same problem were also determined numerically utilizing initial boundary layer
structure of the flow and a spatial transformation that stretches with the increase of time.
Although Staniforth’s solution is highly accurate, its validity is limited to high Reynolds
numbers and small times. Panniker and Lavan [4] calculated the initial flow for viscous
incompressible flow over an impulsively started ellipse numerically at an angle of attack of 20°
using both the Green’s function method and finite differences in the case of a Reynolds
number of 200.

Numerical solutions of laminar flow past elliptic cylinders at various angles of attack were
obtained by Lugt and Haussling [7], who studied the problem of flow development past an
abruptly accelerated elliptic cylinder at 45° incidence in the range of Reynolds numbers from
15 to 200. Comparisons between the obtained location of the first vortex and the flow
visualization results reported by Honji [8] show good agreement. However, the surface pressure
distribution reported in Lugt and Haussling’s paper shows some discrepancies since the
pressure periodicity is not fully satisfied (P0�P2�). The numerical solutions to the uniform
flow over an inclined elliptic cylinder were determined for moderate and large values of the
time by Patel [9] and later by Nair and Sengupta [10]. Patel obtained a numerical solution in
the range of Reynolds numbers from 60 to 200. Patel’s solution is based on a Fourier series
approximation of streamfunction and vorticity. In the work of Nair and Sengupta, the
incompressible flow past impulsively started elliptic cylinders of aspect ratio of 0.1 and 0.25
was computed for Reynolds number of 3000 and 104. Navier–Stokes equations were solved in
their streamfunction–vorticity formulation using a two-dimensional direct numerical simula-
tion. In these numerical studies, a potential flow solution was used as an initial condition at
the start of the cylinder motion and also no measures were taken to ensure the periodicity of
pressure.

Experimental studies of the uniform flow over inclined elliptic cylinders were carried out by
Honji [8] and Taneda [11,12]. Honji [8] observed the starting flow around a sphere and an
elliptic cylinder at 45° and 54° angles of incidences. Taneda [11] studied the relationship
between lift and flow pattern for the case of an impulsively started elliptic cylinder at angles
of incidence of 20° and 45° in the cases of Reynolds numbers 3500 and 6000 respectively. He
reported very high initial lift values and a gradual downward movement of the rear stagnation
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point. In addition, it was pointed out that lift takes negative values in a small time interval
shortly after the impulsive start in the case of angle of attack 20° unlike the case of angle of
attack 45°. One of the most comprehensive experimental works on unsteady separated flows
around bodies is that of Taneda [12]. He studied flow patterns around two-dimensional bodies
like circular and elliptic cylinders, flat plates and flexible plates. The unsteady motions studied
were the impulsive start from rest, change of velocity, translational oscillation, change of angle
of incidence, uniform rotation, rotational oscillation and swimming motion. In the case of
uniform flow past an impulsively started inclined elliptic cylinder, he again reported that the
negative lift occurs shortly after the start of motion depending upon the value of the angle of
inclination.

In this paper, the problem of uniform flow past an impulsively started inclined elliptic
cylinder is considered. The problem is solved for Reynolds numbers ranging from 900 to 5000
and for the range of angle of attack between 0 and 90°. The method of solution, which is based
on a numerical integration of the Navier–Stokes equations, is verified by applying it to
problems of known numerical or experimental solutions. Laminar flow assumption is made
and the cylinder axis ratio is assumed to be 0.5 or 0.6. The time variation of the flow field is
presented in the form of streamline patterns as well as surface vorticity distribution. The
surface pressure distribution and the time variation of the drag and lift force coefficients are
also calculated. It is found that an unusual behavior in the lift coefficient, not reported in
previous numerical studies, occurs depending upon the value of the angle of inclination and is
consistent with the experimental findings of Taneda [11,12]. The results of this study are of
theoretical and practical importance, since it adds to the knowledge of fluid force coefficients
and is directly related to several engineering applications.

2. GOVERNING EQUATIONS AND METHOD OF SOLUTION

In the present work we consider the two-dimensional flow caused by an infinitely long elliptic
cylinder set in motion impulsively which translates with uniform velocity U in the horizontal
direction. The cylinder is assumed to be inclined to the horizontal direction at an angle �. The
ellipse has major and minor axis of lengths 2a and 2b respectively. Using the Cartesian
co-ordinate system shown in Figure 1, the Navier–Stokes equations and the mass conservation
equation can be expressed in the form of Helmholtz vorticity transport equation and stream
function equation as
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where x and y are the co-ordinates shown in Figure 1, t is the time, � is the streamfunction,
� is the vorticity, u and � are the velocities in the x- and y-directions, Re is the Reynolds
number defined as Re=U(2c)/�, and
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Figure 1. Co-ordinate system and flow configuration.
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All above variables are dimensionless. They are related to the dimensional variables (with
primes) by
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where c stands for the focal distance of the ellipse defined by c=�a2−b2. The boundary
conditions are simply the no-slip and impermeability conditions at the solid surface and the
free stream conditions far away from it. It can be represented by
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=0 on the cylinder surface (3a)
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�y
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��

�x
� −sin � far away from the surface (3b)

The elliptic co-ordinate system (�, �) defined by the transformation

x=cosh � cos �, y=sinh � sin �

is used with the origin at the center of the cylinder. The governing equations in the elliptic
co-ordinate system are

�2�

��2 +
�2�

��2 =H� (4)
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where

H=
1
2

[cosh(2�)−cos(2�)]

The boundary conditions given in Equation (3) can be expressed in the new co-ordinate
system as
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Here the constant �0 is defined by �0= tanh−1(r̄), where r̄ is the aspect ratio of ellipse
defined by r̄=b/a and �=�0 defines the surface of the cylinder.

The Navier–Stokes equations (4) and (5) are solved by finite differences using a Crank–
Nicolson iterative procedure with under-relaxation applied only to the surface vorticity. The
method is based on approximating the stream function and the vorticity using Fourier
series expansion. The method is essentially a generalization of that used by Badr and
Dennis [13] and Badr et al. [14] in which the functions � and � were expressed in the form
of Fourier series

�=
1
2

F0(�, t)+ �
N

n=1

fn(�, t) sin n�+Fn(�, t) cos n� (7a)

�=
1
2

G0(�, t)+ �
N

n=1

gn(�, t) sin n�+Gn(�, t) cos n� (7b)

In the case of �=0°, the functions Fn(�, t) and Gn(�, t) are identically zero in Equations
(7), whereas in the case of �=90°, the functions f2p−1(�, t), F2p(�, t), g2p−1(�, t), G2p(�, t)
for all integers p�1 are identically zero in Equation (7). This is due to the fact that in the
first the flow is symmetric about �=0 and in the second the flow is symmetric about
�=90°. The equations governing the functions in Equations (7a) and (7b) can be obtained
by substitution into Equations (4) and (5) and then integration of the resulting equation,
after multiplication of each side at a time by {1, cos n�, sin n� : n=1, 2, . . . } with respect to
� from 0 to 2�, it is found that
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Here �mn is the Kronecker delta symbol defined by

�mn=1 if m=n, �mn=0, if m�n
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and sgn(m−n) is the sign of (m−n) with sgn(0)=0. Equations (8a)– (8c) and (9a)– (9c) define
two sets of (2N+1) partial differential equations to be solved, where N is the order of
truncation in the Fourier series.

The boundary conditions for all the functions given in Equations (8) and (9) can be obtained
using Equations (6) and (7), which results in the following:

F0=
�F0

��
= fn=

�fn

��
=Fn=

�Fn

��
=0 when �=�0 (11a)

G0, gn, Gn � 0 as � � � (11b)

F0 � 0, fn�
1
2
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Fn � −
1
2

e� sin(�)�n1 as � � � (11d)

It may be shown that the conditions (9) and (10) can be combined to give a further set of
conditions of global type, namely

��
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e−n� d�=cos ��n1 (12c)

These integral conditions are used to calculate the values of functions gn and Gn on the cylinder
surface at every time step. The first condition (12a) is essential for ensuring that the pressure
is single valued at any point around the cylinder surface. It is important here to mention that
the issue of periodicity of pressure was raised, but not resolved, in the work by Pannikar and
Lavan [4]. The numerical scheme used for advancing the solution of � and � through one time
step is essentially the same as that given by Badr and Dennis [13]. The only difference is the
appearance of the derivatives �G2/�t in Equation (9a), (�G�n−2�/�t, �Gn+2/�t) in Equation (9b),
and (�G0/�t, �g�n−2�/�t, �gn+2/�t) in Equation (9c). When solving for gn or Gn, the functions
with subscripts (n+2) are unknown. These unknown functions (�gn+2/�t, �Gn+2/�t) were
taken care of by approximating their values at time (t+�t) to be initially the same as at time
t and then updating these values through an iterative procedure.

In order to start the integration scheme, an initial solution for the governing equations at
t=0 must be known. Equations (8) and (9) determine the development of the flow at some
time after the impulsive start, but during the initial stages of the motion the boundary layer
co-ordinates (x, 	) can be introduced by the transformation
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�=�0+kx, where k=2

2	

R
, 	= t (13)

This is employed to transform all the appropriate equations with the following scaling of
variables:

Fn=kFn*, Gn=Gn*/k, fn=kfn*, gn=gn*/k (14)

After suppressing all stars, Equations (8a)– (8c) become

�2F0

�x2 =
1
2

cosh[2(�0+kx)]G0−
1
2

G2 (15a)

�2Fn

�x2 −n2k2Fn=
1
2

cosh[2(�0+kx)]Gn−
1
4

[G0�n2+G�n−2�+G(n+2)] (15b)

�2fn

�x2 −n2k2fn=
1
2

cosh[2(�0+kx)]gn−
1
4

[sgn(n−2)g�n−2�+g(n+2)] (15c)

while Equations (9a)– (9c) become

�2G0

�x2 +cosh[2(�0+kx)]
�

x
�G0

�x
+G0

�
=2	 cosh[2(�0+kx)]

�G0

�	
−4	Tn0 (16a)

�2Gn

�x2 +cosh[2(�0+kx)]
�

x
�Gn

�x
+Gn

�
=2	 cosh[2(�0+kx)]

��Gn

�	

�
+

8	

R
n2Gn +2	

�
nfn

�G0

�x
−ngn

�F0

�x
− Tn1

n
(16b)

�2gn

�x2 +cosh[2(�0+kx)]
�

x
�gn

�x
+gn

�
=2	 cosh[2(�0+kx)]

��gn

�	

�
+

8	

R
n2gn−2	

�
nFn

�G0

�x
−nGn

�F0

�x
+ Tn2

n
(16c)

where Tn0, Tn1 and Tn2 are easily identifiable functions of the Fourier coefficients. The
boundary and integral conditions simply become

F0=
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�fn
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=Fn=

�Fn

�x
=0 when x=0 (17a)

G0, gn, Gn � 0 as x � � (17b)

kfn � e�0 sinh(kx) cos(�)�n1 as x�� (17c)
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kFn � −e�0 sinh(kx) sin(�)�n1 as x � � (17d)
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The governing equations and boundary and integral conditions (15)– (18) are solved using a
special integrating scheme for (15) similar to that used by Badr and Dennis [13] and a
Crank–Nicolson scheme for Equation (16). It is important to mention that the boundary layer
co-ordinate x will continuously stretch with time when viewed in the physical co-ordinates.
This behavior matches the phenomenon under investigation since the viscous region starts with
zero thickness at 	=0 and grows as time increases.

The initial solution obtained by Staniforth [3] at 	=0 can be expressed as

�=e�0 sin(�−�)
�

x erf(H0
1/2x)+

1
�1/2H0

1/2 (e−H0x2

−1)
n

(19a)

�=
2

�1/2H0
1/2 e�0 sin(�−�) e−H0x2

(19b)

where

H0=
1
2

(cosh 2�0−cos 2�)

The Fourier functions (Gn, gn, Fn, fn) corresponding to the initial solution given in Equation
(19) are obtained numerically. By trying different numbers of terms, it is found that 15 terms
in the Fourier series are sufficient to accurately approximate the above expressions. The use of
the initial solution is very essential for obtaining accurate results at small time. The use of a
potential solution as an initial condition at 	=0 was frequently adopted by many researchers;
however, this will definitely lead to inaccurate results following the start of fluid motion. The
effect of such inaccuracy on the large time results is not known.

The integral conditions (18) are used to calculate the values of the functions Gn, and gn on
the cylinder surface (�=�0) at every time step. Following the start of fluid motion, very small
time steps (�	=10−4) are taken since the time variation of the vorticity field is quite fast.
However, as time increases, the time step was gradually increased until reaching �	=0.05. The
number of points in the � direction is taken as 101 with a space step of ��=0.1. This makes
�max=�0+10, which sets the outer boundary at a physical distance of at least 11000 times the
focal distance. Such a far-away boundary ensures that the application of the boundary
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conditions (17c) and (17d) does not impose any unrealistic conditions on the solution scheme.
The number of terms in the series (7a) and (7b) starts with 15 at 	=0 and more terms are
added as time increases. One more term is added at a time when the last term in the series
reaches a maximum value of 10−4. Using numerical experimentation it is found that, for the
range of Reynolds number considered in this paper, a maximum of 30 terms is adequate over
the time range of calculations.

3. RESULTS AND DISCUSSION

In this section, we will first verify the method of solution and the accuracy of the numerical
scheme and will then present results for three values of Reynolds number Ra=900, Re=1000,
5000, where Ra is the Reynolds number based on the length of major axis of the elliptical
cross-section and defined by Ra=U(2a)/�. In the case of Re=5000, the problem is solved for
the five angles of incidence of �=0, 15, 30, 45 and 90°, while the aspect ratio of the ellipse is
kept unchanged at r̄=0.6. On the other hand, at Re=1000, the problem is solved for the two
angles of incidence of 0 and 30° while keeping the aspect ratio of the ellipse unchanged
(r̄=0.6). The Reynolds number case of Ra=900 is only investigated for �=45° and r̄=0.5.
The results are presented in the form of the time variation of the streamline patterns as well
as the variations of the drag and lift coefficients and pressure distributions. The variations of
the vorticity at small values of time are also presented and compared with a semi-analytical
small time-series solution obtained by Staniforth [3]. The computations are terminated at
	=10 for the cases of Re=1000 and at 	=5 for the cases of Re=5000. In the case of
Ra=900, the computations are carried out only for values of the time up to 	=7.

The fluid forces acting on the cylinder are mainly the drag and lift forces (D, L) shown in
Figure 1. These forces arise from the fluid pressure and shear forces acting on the cylinder
surface. We will first obtain an expression for the pressure distribution and then use it to
calculate the drag and lift force coefficients. We now introduce the dimensionless pressure
coefficient p* defined by

p*(�, t)=
p�−p�

1
2


U2

An expression for the surface pressure gradient can be obtained by applying the Navier–
Stokes equations at the cylinder surface and making use of the boundary conditions given in
(6a)– (6c). After making necessary simplifications, we obtain

��p*
��

n
�=� 0

= −
4

Re
���

��

�
�=� 0

By using expression (7b) for � and integrating both sides of the above expression with respect
to � between the two limits of � and �, we obtain
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p*(�, t)= −
4

Re
�1

2
�G0

��
(�−�)+ �

N

n=1

1
n
��Gn

��
sin n�−

�gn

��
(cos n�−cos n�)

n	
(20)

The periodicity of p requires that (�G0/��)� 0
must vanish at all times. One can easily prove that

the use of the integral condition (18a) is sufficient for satisfying the periodicity of p.
The drag and lift forces can be calculated by considering the components of pressure and

shear forces acting on an elementary surface area in the x- and y-directions. The resulting

Figure 2. Comparison between the vorticity distribution obtained from the present study and that
obtained by Staniforth using a series solution Re=5000, r̄=0.6: (a) �=0°, (b) �=15°, (c) �=30°, (d)

�=45°, (e) �=90°.
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Figure 2 (Continued)

equations are integrated around the cylinder surface to obtain expressions for the x- and
y-components of fluid forces in terms of the Fourier functions. These can be written as

Fxf=��U cosh �0g1(�0, t)

Fyf= −��U sinh �0G1(�0, t)

Fxp= −��U sinh �0[�g1(�, t)/�� ]� 0

Fyp=��U cosh �0[�G1(�, t)/�� ]� 0

where Fxf and Fyf represent the x- and y-components of the friction forces acting on the
cylinder surface, and Fxp and Fyp are the corresponding components of the pressure forces. The
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Figure 2. (Continued)

contribution of these forces in the horizontal and vertical directions results in the drag and lift
forces, D and L, which can be expressed as

D= (Fxf+Fxp) cos �+ (Fyf+Fyp) sin �

L= (Fyf+Fyp) cos �− (Fxf+Fxp) sin �

The drag and transverse force coefficients CD and CL are defined by
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Figure 2 (Continued)

CD=
D

1
2


U2(2a)
, CL=

L
1
2


U2(2a)

The above expression can be split into two parts, one due to frictional forces and the other due
to pressure forces. The resulting coefficients can be expressed in terms of the Fourier functions
as
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Figure 2 (Continued)

CDF=
2�

Re
[g1 cos �−G1 tanh �0 sin � ]� 0

CDP=
2�

Re
��G1

��
sin �−

�g1

��
tanh �0 cos �

n
� 0

CLF= −
2�

Re
[g1 sin �+G1 tanh �0 cos � ]� 0
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CLP=
2�

Re
��G1

��
cos �+

�g1

��
tanh �0 sin �

n
� 0

where CDF and CDP are the friction and pressure components of the drag coefficient
(CD=CDF+CDP) and CLF and CLP are the friction and pressure components of the lift
coefficient (CL=CLF+CLP).

In order to verify the method of solution and the numerical scheme used in this work, the
initial flow for the problem under consideration is calculated. This initial flow was studied
analytically by Staniforth [3] who obtained a time-series solution for the stream function and
vorticity. However, Staniforth’s solution is only valid for a very small time after the start of the
cylinder motion. The cases considered for comparison are the cases of Re=5000 when r̄=0.6
and �=0, 15, 30, 45 and 90°. Figure 2(a)– (e) shows comparisons between the surface vorticity
distributions obtained from the present study and that obtained by Staniforth using a series
solution at small times. These figures show an excellent agreement between the two solutions.
Numerical values of the vorticity at various positions are shown in Table I when 	=0.4, which

Table I. Comparison between the present work and Staniforth’s resultsa.

StaniforthAngle (°) Present Staniforth
(series) (numerical)

28.60 28.828.80
2.12.52.2015

−1.86 −0.7 −2.130
15.315.615.5645

33.533.67 33.560
47.075 47.147.31
56.9 57.090 57.28

65.34 65.0 65.1105
73.78 73.673.4120
86.50135 86.2 86.4

106.3150 106.60 106.4
116.2165 116.7117.30

77.2180 76.977.40
0.0−0.2−0.011195

−51.5 −51.6−51.84210
−71.56 −71.3−71.2225
−78.08 −77.6 −77.8240

255 −81.00 −80.5 −80.7
−82.2270 −82.4−82.70

−82.92 −82.5 −82.6285
−79.73 −79.2 −79.5300

−68.1−67.6−68.32315
−39.71 −37.9 −39.3330

2.15.81345 6.8
360 28.828.628.80

a Vorticity variation at 	=0.4: Re=5000, �=15° and r̄=0.6.
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Figure 3. (a) Variation of the drag coefficients: CDF, CDP and CD with 	 at Re=1000, r̄=0.6, and
�=0°. (b) Variation of the drag coefficients: CDF, CDP and CD with 	 at Re=5000, r̄=0.6, and �=0.
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Figure 4. Instantaneous streamlines of the flow for Re=1000, r̄=0.6, and �=0°: (a) 	=2.0, (b) 	=5.0,
(c) 	=10.0.

compares the present results with the results of Staniforth in the case of Re=5000, �=15° and
r̄=0.6.

The calculated values of CDF, CDP and CD when the flow is symmetric about the major axis
(�=0) are plotted in Figure 3(a) and (b) for the cases of Re=1000 and 5000 respectively when
r̄=0.6. These figures show that the contribution of frictional force to the total drag coefficient
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Figure 5. Instantaneous streamlines of the flow for Re=5000, r̄=0.6, and �=0°: (a) 	=1.0, (b) 	=2.0,
(c) 	=5.0.
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Figure 6. Instantaneous streamlines of the flow for Re=1000, r̄=0.6, and �=30°: (a) 	=1.0, (b)
	=2.0, (c) 	=3.0, (d) 	=4.0, (e) 	=5.0, (f) 	=6.0, (g) 	=7.0, (h) 	=8.0, (i) 	=10.0.

CD is relatively small. They also show, as expected, that the frictional drag coefficient decreases
with the increase of Re. In the case when Re=1000, CD takes the constant value near 0.6,
whereas in the case of Re=5000, CD becomes periodic after a transition period when 	�4.0.
The instantaneous streamline patterns are plotted for the same two cases (Re=1000 and 5000)
when the flow is symmetric about the major axis. The time variation of the streamline patterns
is shown in Figure 4(a)– (c) for the first case when 	 varies from 2.0 to 10.0 and for the second
case in Figure 5(a)– (c) when 	 varies from 1.0 to 5.0 respectively. In these figures the usual
formations and detachments of upper (clockwise) and lower (counterclockwise) vortex pairs
take place.

Nine snapshots of the flow field for the case of �=30° and r̄=0.6 are shown in Figure 6
when Re=103. Figure 6(a) shows the formation of a separation bubble. The vortex resulting
from this separation bubble develops at time 	=3.0 near the upper half of the cylinder. After
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Figure 7. (a) Variation of the drag coefficients: CDF, CDP and CD with 	 at Re=1000, r̄=0.6, and
�=30°. (b) Variation of the lift coefficients: CLF, CLP and CL with 	 at Re=1000, r̄=0.6, and �=30°.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 905–931



H. M. BADR, S. C. R. DENNIS AND S. KOCABIYIK926

Figure 8. The time development of pressure distribution for the case of Re=1000, r̄=0.6, and �=30°.

a while this vortex detaches and moves downstream. During the time interval 1.0�	�10.0,
the formations and detachments of upper (clockwise) and lower (counterclockwise) vortex
pairs take place and this classical mode of vortex shedding leads to the formation of a Karman
street (see Figure 6(i)). Comparison of these figures with the corresponding ones in the case of
�=0 indicates that the separation point moves more toward the front of the cylinder as �

increases from 0 to 30°, as expected.
In the case of flow past an inclined elliptic cylinder (��0), lift is present unlike the

symmetrical case (�=0). The calculated values of CD and CL are plotted in Figure 7(a) and (b)
respectively for the case of �=30° and r̄=0.6. These figures indicate periodic variation of the
flow field associated with vortex shedding. Comparison of CD with the corresponding one in
the case of �=0 indicates that the CD curve shows non-periodic behavior in the case �=0,
whereas in the case of �=30°, the CD curve shows a periodic behavior after a transition period
when 	=6.0. Figure 7(b) illustrates an interesting behavior of the lift coefficient, CL, where it
takes negative values after 	=8.0. It may be noted that this unusual behavior of a negative lift
was reported by Taneda [11,12] experimentally (see Taneda [12: p. 295, figures 12 and 14]) but
not reported theoretically in any previous work. In order to explain this phenomenon, we
relied on the streamline patterns given in Figure 6 together with the time variation of CL given
in Figure 7(b). The decrease in CL started approximately at 	=5, which marks the beginning
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of detachment of the first vortex and the formation of the second vortex at the upper
surface of the cylinder as shown in Figure 6(e). The process of the first vortex detachment
continued until 	=7 (Figure 6(g)). At 	=8, the first vortex started shedding away from
the surface (Figure 6(h)) causing a net circulation in the reverse direction and resulting in
the negative lift. This phenomenon represents a new contribution of this work. Figure 8

Figure 9. Comparison with Taneda’s flow visualization for Ra=900, r̄=0.6, and �=45°: (a) 	=0.416,
(b) 	=0.808, (c) 	=1.224, (d) 	=1.917, (e) 	=2.702, (f) 	=3.856, (g) 	=4.942, (h) 	=7.020.
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Figure 9 (Continued)

shows the time variation of the surface pressure distribution for the same case at 	=1.0, 2.0,
5.0, 10.0.

In order to compare the obtained streamline patterns with the experimental flow visualiza-
tion reported by Taneda [12], the case of �=45°, r̄=0.5, when Ra=900 was investigated.
Figure 9 shows a comparison between the present results at eight time steps and those reported
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Figure 10. Variation of the total drag and lift coefficients with 	 at Ra=900, r̄=0.6, and �=30°.

Figure 11. The time development of pressure distribution for the case of Ra=900, r̄=0.6, and �=45°.
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by Taneda [12] where an excellent agreement was found. The time variations of the drag and
lift coefficients are shown in Figure 10. Figure 11 shows the time variation of the surface
pressure distribution for the same case at 	=0.425, 1.225, 2.7 and 4.95.

4. CONCLUSIONS

In the present paper we have considered the initial phase of flow development past an inclined
elliptic cylinder. The study is based on a numerical integration of the Helmoltz vorticity
transport equation together with the stream function equation. A boundary layer co-ordinate
system was used following the start of fluid motion to ensure high accuracy at small times.
Integral conditions were deduced and used in the numerical scheme for accurate prediction of
the vorticity components at the solid boundary and also to ensure that the pressure is single
valued at any point around the cylinder surface. Various comparisons are made with previous
theoretical and experimental results including flow visualizations to validate the solution
methodology and an excellent agreement was found. The numerical solution was carried out
sufficiently far in time to reveal an interesting transient phenomenon of negative lift occurring
shortly after the start of motion for a positive angle of attack. This is the first time this
phenomenon has been reported theoretically.
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